| Documentation on CDV-KNX interface / starting from CDV FW version V1.2.0 | |--| Documentation on CDV-KNX interface / starting | | from CDV firmware version V1.2.0 | | _ | | from CDV firmware version V1.2.0 #### Note: The use of the KNX application file Maico_SIM_KWL.knxprod in connection with the KNX module K-SM (0092.0557) is only possible starting from CDV firmware version V1.2.0. Download the KNX application file https://www.maico-ventilatoren.com/en/service/downloads. The KNX project file previously provided to be downloaded, is only supported by the CDV control up to CDV firmware V1.1.1. For new installations / commissioning of KNX systems, we recommend exclusively the use of the KNX application file Maico_SIM_KWL.knxprod from CDV firmware version V1.2.3. How to perform the firmware update of the CDV controller is described in step 2 of this document. #### Notice: Carrying out the control update to firmware V1.2.0 (or newer) entails reworking the KNX programming (ETS) for CDV units with FW version V1.1.1 (or older) already integrated in the KNX system. Case: Update of the unit control to V1.2.0. (or newer). Problem: The CDV unit can no longer be reached via the bus within the KNX system. **Solution 1**: The CDV unit is newly integrated into the KNX system using a new KNX application file. -> Programming of the CDV unit within the KNX system must be created again. **Solution 2**: Installing the firmware V1.1.2 (Firmware KNX Backup) using the Update Tool of the CDV commissioning software (see step 2 in this document). -> Reprogramming the existing application program on the K-SM is sufficient to integrate the CDV unit into the KNX system again. #### In general: After integration into the KNX bus system, the optional K-SM module functions as any control element on the CDV unit. Regardless of whether the CDV unit is controlled from the control-section or via the KNX module, the last command received remains valid. ### Integration of Maico K-SM into the KNX bus system The construction of a KNX network or the integration of KNX-capable units into a KNX bus system is usually carried out by a system integrator. The programming of such a system (KNX) is only possible by using an ETS software. The application file Maico_SIM_KLW.knxprod is available as a basis for integrating the KNX module in the ETS software. This file can be imported using the import function in the ETS software. Once the process is complete, the imported application file (device file) can be used as the basis for further integration in the KNX system. ### Important information: The failure of the KNX bus voltage has no effect on the CDV unit. The functions of the device are still possible without restrictions. After restoring the KNX bus voltage, the CDV unit must be switched off and switched back on by means of a device switch to start the K_SM initialization. After the CDV unit has been restarted, it is once again available on the KNX bus without restrictions. As of CDV firmware version V1.2.3, the initialization of the K_SM takes place automatically after bus voltage failure or bus reset. ### **Installing KNX module** Documentation on CDV-KNX interface / starting from CDV FW version V1.2.0 The KNX module may only be installed if the unit is de-energised. The unit must be disconnected from the mains before the installation. The installation and activation of the KNX module K-SM must be carried out according to the installation instructions "KNX Module K-SM" (step 1). Further information on integrating the CDV unit into the KNX system is described from step 2 to step 7. Figure 1: KNX-Modul K-SM (0092.0557) ## Step 1 Install and commission the KNX module K-SM according to the enclosed installation instructions "KNX Module K-SM". Note: KNX module K-SM must be activated by means of CDV commissioning software, touch operating unit or web server under Settings -> KNX. (KNX setting = yes). ### Step 2 Perform a control update of the unit control. The firmware update is carried out using the update tool of the CDV commissioning software (from V2.4). - a. Download the CDV commissioning software at https://www.maico-ventilatoren.com/en/service/downloads. - b. Installation of the software on the PC, laptop. - c. Connect the CDV control and PC/laptop via USB cable. - d. Start CDV update. Update the unit control with the latest firmware version (CDV update V1.2.0.Image or newer). Attention: see page 2! ## Step 3 Activate KNX bus power supply. The KNX module is now powered by the KNX bus and can be configured and parameterised using the ETS software. ### Step 4 To assign a physical address, the module's programming mode first has to be activated. This is done by pressing the programming button on the KNX module. When the KNX module is in programming mode, its red LED lights up and a physical address can be issued via the ETS software. Once the physical address has been successfully programmed, the LED goes out automatically. Programming mode can also be deactivated manually by pressing the button again. ## Step 7 Once the module address has been successfully programmed, the unit can be closed again. To do this, the control console, with the control unit, is hooked into the control box and the unit cover is closed. The power supply to the WS/WR unit can then be reactivated. ## **Application program and group addresses** If group addresses have been assigned to all the necessary communication objects, the programming of the KNX module can be started. Firstly the ETS software is used to transfer the application program to the KNX module. The application program contains the basic function of the KNX module. The group addresses and parameters are then transferred. ## KNX objects list / CDV units starting from firmware version V1.2 | Name | Object no. | Function | Туре | Fla | ags | | | | Min | Max | Step
width | Unit | |---|--------------|--|------------------------------------|----------|-----|----------|----------|----------|-----|------|---------------|------| | | | | | Κ | L | S | Ü | Α | | | | | | Operating mode | Object
0 | Read operating mode | DPT17.001
(scene number) | ✓ | ✓ | | ✓ | ✓ | 1 | 6 | 1 | - | | Operating mode | Object
1 | Write operating mode | DPT17.001 (scene number) | √ | | ✓ | | √ | 1 | 6 | 1 | - | | Season | Object
2 | Read season | DPT1.001
(switching) | ✓ | ✓ | | ✓ | ✓ | Off | On | - | - | | Season | Object
3 | Write season | DPT1.001
(switching) | ✓ | | ✓ | | ✓ | Off | On | - | - | | Ventilation level | Object
4 | Read ventilation level | DPT17.001
(scene number) | ✓ | ✓ | | ✓ | ✓ | 1 | 5 | 1 | - | | Ventilation level | Object
5 | Write ventilation level | DPT17.001
(scene number) | √ | | √ | | √ | 1 | 5 | 1 | - | | Intermittent ventilation | Object
6 | Read
intermittent
ventilation | DPT1.001
(switching) | √ | ✓ | | ✓ | √ | Off | On | - | - | | Intermittent ventilation | Object
7 | Write intermittent ventilation | DPT1.001
(switching) | √ | | ✓ | | √ | Off | On | - | - | | Intermittent ventilation – remaining time | Object
8 | Read remaining intermittent ventilation time | DPT7.005
(time in
seconds) | √ | ✓ | | ✓ | √ | 0 | 5400 | 1 | sec. | | Duration of intermittent ventilation | Object
9 | Read duration of intermittent ventilation | DPT7.005
(time in
seconds) | √ | ✓ | | √ | √ | 300 | 5400 | 1 | sec. | | Duration of intermittent ventilation | Object
10 | Write duration of intermittent ventilation | DPT7.005
(time in
seconds) | ✓ | | √ | | ✓ | 300 | 5400 | 60 | sec. | | Room
temperature
(actual) | Object
11 | Read room
temperature | DPT9.001
(temperature in °C) | √ | ✓ | | ✓ | √ | - | - | 0.01 | °C | | Room
temperature
(setpoint) | Object
12 | Read room
temperature | DPT9.001
(temperature in
°C) | √ | ✓ | | ✓ | √ | - | - | 0.01 | °C | | Room | Object | Write room | DPT9.001 | √ | | √ | | √ | 18 | 25 | 0.1 | °C | |---|--------------|--|---|----------|----------|----------|----------|----------|----|------|------|-------| | temperature
(setpoint) | 13 | temperature | (temperature in °C) | | | | | | 10 | 23 | 0.1 | C | | Room
temperature
KNX | Object
14 | Write room
temperature via
KNX | DPT9.001
(temperature in
°C) | √ | | √ | | √ | 0 | 50 | 0.1 | °C | | Max. room
temperature
(actual) | Object
15 | Read maximum room temperature | DPT9.001
(temperature in °C) | ✓ | √ | | √ | √ | - | - | 0.01 | °C | | Max. room
temperature
(set) | Object
16 | Write maximum room temperature | DPT9.001
(temperature in
°C) | ✓ | | √ | | ✓ | 18 | 30 | 0.1 | °C | | Min. supply air temperature cooling (actual) | Object
17 | Read T-supply air min. cooling | DPT9.001
(temperature in °C) | √ | √ | | ✓ | ✓ | - | - | 0.5 | °C | | Min. supply air temperature cooling (set) | Object
18 | Write T-supply air min. cooling | DPT9.001
(temperature in
°C) | ✓ | | √ | | ✓ | 8 | 29 | 0.5 | °C | | Volumetric
flow of supply
air (actual) | Object
19 | Read current
volumetric flow
of supply air | DPT9.009 (air
throughput in
m³/h) | | ✓ | | ✓ | | - | - | 1 | m³/h | | Volumetric
flow of exhaust
air (actual) | Object
20 | Read current volumetric flow of exhaust air | DPT9.009 (air
throughput in
m³/h) | √ | √ | | ✓ | ✓ | - | - | 1 | m³/h | | Speed of supply air fan (actual) | Object
21 | Read current speed of supply air fan | DPT14.033
(frequency Hz) | ✓ | ✓ | | ✓ | ✓ | - | - | 0.01 | Hz | | Speed of exhaust air fan (actual) | Object
22 | Read current
speed of
exhaust air fan | DPT14.033
(frequency Hz) | ✓ | √ | | ✓ | ✓ | - | - | 0.01 | Hz | | Supply air temperature | Object
23 | Read measurement of supply air temp. | DPT9.001
(temperature in °C) | √ | ✓ | | ✓ | ✓ | - | - | 0.01 | °C | | Temperature of outgoing air | Object
24 | Read
measurement of
outgoing air
temp. | DPT9.001
(temperature in
°C) | √ | ✓ | | ✓ | ✓ | | | 0.01 | °C | | Temperature of air at unit inlet | Object
25 | Read measured value temp. of air at unit inlet | DPT9.001
(temperature in °C) | √ | √ | | √ | ✓ | | | 0.01 | °C | | Temperature of exhaust air | Object
26 | Read
measurement of
exhaust air
temp. | DPT9.001
(temperature in
°C) | | √ | | ✓ | ✓ | | | 0.01 | °C | | Relative
humidity
exhaust air | Object
27 | Read humidity value exhaust air | DPT9.007
(humidity %) | √ | ✓ | | √ | ✓ | | | 0.1 | %r.h. | | Room sensor external air | Object
28 | Write air quality value via KNX | DPT9.008
(parts / million | ✓ | | √ | | ✓ | 0 | 3000 | 1 | ppm | | quality 1 | | | ppm) | | | | | | | | | | |---|--------------|--|--------------------------------------|----------|----------|----------|----------|----------|-----|-----------------|------|----------------| | Room sensor | Object | Write air quality | DPT9.008 | √ | | √ | | √ | 0 | 3000 | 1 | ppm | | external air
quality 2 | 29 | value via KNX | (parts / million ppm) | | | | | | | | _ | ρ β···· | | Room sensor
external air
quality 3 | Object
30 | Write air quality value via KNX | DPT9.008
(parts / million
ppm) | √ | | √ | | ✓ | 0 | 3000 | 1 | ppm | | Room sensor
external
relative
humidity 1 | Object
31 | Write relative
humidity value
via KNX | DPT9.001
(Humidity %) | ✓ | | ✓ | | √ | 0 | 100 | 0.1 | %r.h. | | Room sensor
external
relative
humidity 2 | Object
32 | Write relative
humidity value
via KNX | DPT9.007
(Humidity %) | ✓ | | ✓ | | ✓ | 0 | 100 | 0.1 | %r.h. | | Time remaining, unit filter | Object
33 | Read time
remaining for
unit filter | DPT7.007
(time h) | | ✓ | | | ✓ | - | - | 1 | Hour
(h) | | Time remaining, external filter | Object
34 | Read time
remaining for
external filter | DPT7.007
(time h) | √ | | | √ | | - | - | 1 | Hour
(h) | | Time remaining, room filter | Object
35 | Read time
remaining for
room filter | DPT7.007 (time
h) | √ | √ | | √ | | - | - | 1 | Hour
(h) | | Acknowledge fault | Object
37 | Acknowledge fault | DPT1.001
(switching) | ✓ | | √ | | ✓ | Off | On | - | - | | Status of switching contact | Object
41 | Read status of switching contact | DPT1.001
(switching) | √ | √ | | √ | ✓ | Off | On | - | - | | Status of PTC heating register | Object
42 | Read status of PTC heating register | DPT1.001
(switching) | √ | √ | | ✓ | ✓ | Off | On | - | - | | Status of bypass | Object
43 | Read status of bypass | DPT1.001
(switching) | ✓ | ✓ | | ✓ | ✓ | Off | On | - | - | | Status of brine
EHE (ZP1) | Object
44 | Read status of brine EHE | DPT17.001
(scene) | ✓ | ✓ | | ✓ | ✓ | 1 | 3 | 1 | - | | Position of zone shutter (ZP1) | Object
45 | Read position of zone shutter | DPT17.001
(scene number) | ✓ | ✓ | | | ✓ | 1 | 3 | 1 | - | | Status of 3-way
air shutter
(ZP1) | Object
46 | Read status of
3-way air
shutter | DPT17.001
(scene number) | √ | | | √ | | 1 | 3 | 1 | - | | Status of supplementary heating (ZP1) | Object
47 | Read status of supplementary heating | DPT1.001
(switching) | | √ | | | √ | Off | On | | - | | Total operating time | Object
48 | Read operating time of CDV (days) | DPT13.100
(time difference
s) | √ | | | √ | | 0 | 2 ³¹ | 1 | S | | Temperature outside air upstream of | Object
50 | Read outside air
temperature
upstream of EHE | DPT9.001
(Temperature / °C) | ✓ | ✓ | | ✓ | ✓ | - | - | 0.01 | °C | # Documentation on CDV-KNX interface / starting from CDV FW version V1.2.0 | EHE | | | | | | | | | | | | |--------------------|---------------|---------------------------------------|------------------------------------|----------|----------|----------|---|---|----|---|---| | Fault code | Object
112 | Read fault code | DPT16.000
(ASCII
characters) | √ | √ | √ | ✓ | 0 | 22 | 1 | - | | Information code 1 | Object
113 | Read information code (information 1) | DPT16.000
(ASCII
characters) | ✓ | • | ✓ | ✓ | 0 | 20 | 1 | - | | Information code 2 | Object
114 | Read information code (information 2) | DPT16.000
(ASCII
characters) | ✓ | • | ✓ | ✓ | 0 | 20 | 1 | - | | Information code 3 | Object
115 | Read information code (information 3) | DPT16.000
(ASCII
characters) | ✓ | ✓ | ✓ | ✓ | 0 | 20 | 1 | - | # **Communication flags** | Flag | Name | Meaning | |------|---------------|--------------------------| | K | Communication | Object is capable of | | | | communication | | L | Read | Object can be read | | S | Write | Object can receive data | | Ü | Transmit | Object can transmit | | A | Update | Object can transmit read | | | | requests | # **Used data types** | Data type | Description | Length | | | | | | | |-----------|---------------------------|----------|--|--|--|--|--|--| | DPT1.001 | Switching | 1 bit | | | | | | | | DPT7.005 | Time (in seconds) | 2 bytes | | | | | | | | DPT7.007 | Time (in hours) | 2 bytes | | | | | | | | DTP9.001 | Temperature (°C) | 2 bytes | | | | | | | | DPT9.007 | Humidity (%) | 2 bytes | | | | | | | | DPT9.008 | Parts/million PPM | 2 bytes | | | | | | | | DPT13.100 | Time difference (seconds) | 4 bytes | | | | | | | | DPT14.033 | Frequency Hz | 4 bytes | | | | | | | | DPT16.000 | Characters (ASCII) | 14 bytes | | | | | | | | DPT17.001 | Scene number | 1 byte | | | | | | | # Assignment tables for KNX objects | Object 0 / F
mode | Read operating | Object 1 / V | Write operating mode | |----------------------|----------------|--------------|----------------------| | Scene | Meaning | Scene | Meaning | # Documentation on CDV-KNX interface / starting from CDV FW version V1.2.0 $\,$ | number | | number | | |--------|-----------------|--------|-----------------| | 1 | Off | 1 | Off | | 2 | Manual | 2 | Manual | | 3 | Auto time | 3 | Auto time | | 4 | Auto sensor | 4 | Auto sensor | | 5 | Eco supply air | 5 | Eco supply air | | 6 | Eco exhaust air | 6 | Eco exhaust air | | Object 2 / Read season | | Object 3 / Write season | | | | | |------------------------|---------|-------------------------|---------|--|--|--| | Value | Meaning | Value | Meaning | | | | | Off | Winter | Off | Winter | | | | | On | Summer | On | Summer | | | | | | | | | | | | | Object 4 / F | Read ventilation level | Object 5 / Write ventilation level | | | | | |-----------------|---------------------------------|------------------------------------|---------------------------------|--|--|--| | Scene
number | Meaning | Scene
number | Meaning | | | | | 1 | Off | 1 | Off | | | | | 2 | Humidity protection ventilation | 2 | Humidity protection ventilation | | | | | 3 | Reduced ventilation | 3 | Reduced ventilation | | | | | 4 | Nominal ventilation | 4 | Nominal ventilation | | | | | 5 | Intensive ventilation | 5 | Intensive ventilation | | | | | Object 6 / F | Read intermittent | Object 7 / Write intermittent ventilation | | | | | |--------------|--------------------------|---|--------------------------|--|--|--| | Value | Meaning | Value | Meaning | | | | | Off | Intermittent ventilation | Off | Intermittent ventilation | | | | | | inactive | | deactivated | | | | | On | Intermittent ventilation | On | Activate intermittent | | | | | | active | | ventilation | | | | | Object 41 / Status of switching contact | | Object 42 / Status of PTC heat registe | | |---|------------------|--|-----------------| | Value | Meaning | Value | Meaning | | Off | Contact inactive | Off | Bypass inactive | | On | Contact active | On | Bypass active | | Object 43 / register | | | |----------------------|--------------------------------|--| | Value | | | | Off | Off PTC heat register inactive | | | On | | | | Object 41 / Status of brine EHE (ZP1 additional circuit board) | | Object 42 / Status of zone shutter (ZP1 | | |--|--------------------|---|-------------------------------| | Scene
number | Meaning | Scene
number | Meaning | | 1 | Brine EHE inactive | 1 | Middle position of
shutter | | 2 | Heat brine EHE | 2 | Shutter: zone 1 | | 3 | Cool brine EHE | 3 | Shutter: zone 2 | | Object 43 / Status of 3-way air shutter (ZP1) | | Object 44 / Status of supplementary heating (ZP1) | | |---|----------------------|---|--------------------------------| | Scene
number | Meaning | Value | Meaning | | 0 | Air shutter inactive | 0 | Supplementary heating inactive | | 1 | Air shutter heating | 1 | Supplementary heating active | | 2 | Air shutter cooling | | | | Object 112 / Read fault code | | | Object 113, 114, 115 / Read information code | | | |------------------------------|---------------------------------------|---------------------------------|--|--|--| | Value | Meaning | Acknowledg
ement
possible | Value | Meaning | | | 0 | No error | | 0 | No information active | | | | | | | Brine EHE, low cooling | | | 1 | Supply air fan | yes | 1 | capacity | | | 2 | Exhaust air fan | yes | 2 | Communication: EnOcean | | | 3 | Sensor: T-air inlet, unit | no | 3 | - | | | 4 | Sensor: T-supply air | no | 4 | Communication: internet | | | 5 | Sensor: T-outgoing air | no | 5 | Bypass active | | | 6 | Sensor: T-room control unit | no | 6 | Zone ventilation active | | | 7 | Sensor: T-room external | no | 7 | Frost protection active | | | 8 | Sensor: T-outside air upstream of EHE | no | 8 | Frost protection, volumetric flow regulation | | | 9 | Bypass | no | 9 | Key lock active | | | 10 | Zone shutter | no | 10 | Filter message: unit | | | | Combination sensor, | | | | | | 11 | exhaust air | no | 11 | Filter message: external filter | | | 12 | Frost protection | no | 12 | Filter message: room filter | | | 13 | External pre-heating | yes | 13 | Volumetric flow, | | | | | | | measurement active | |----|---|-----|----|------------------------------------| | 14 | Supply air temperature too cold | no | 14 | Max. humidity value limit exceeded | | 15 | Exhaust air temperature too cold | no | 15 | Reheating active | | 16 | Sensor: T-room bus | no | 16 | Furnace pressure monitor triggered | | 17 | Additional circuit board 1 | no | 17 | External safety shutdown | | 18 | Additional circuit board 2 | no | 18 | Forced operation active | | 19 | Pressure consistency setpoint not reached | yes | 19 | Communication: ModBus | | 20 | Communication: comfort control unit | no | 20 | Switching test active | | 21 | System memory | yes | | | | 22 | System bus | no | | | | 23 | Unknown error | yes | | | ## **Configuring the transmission intervals** The transmission intervals of the individual communication objects can be defined in the ETS software. The setting range for the transmission intervals is between 1 and 30 minutes. For example, if a value of 5 is set for the communication object operating mode, the communication object transmits the current object value to the KNX bus every 5 minutes regardless of whether the value has changed or not. A value of 0 deactivates the communication object's interval-controlled transmission function. At the same time, a transmission function is activated should the status of the object value change. The object value is thereby only written to the KNX bus if it changes. Figure 1 shows the window for configuring the transmission intervals of communication objects in the ETS software. ## Documentation on CDV-KNX interface / starting from CDV FW version V1.2.0 Figure 2: Configuring the transmission intervals